БИЛЕТЫ К ОСЕННЕМУ ЗАЧЁТУ
Расписание
Зачёт проходит во вторник 19 декабря по расписанию лабораторных работ и в тех же аудиториях. При возможности (по наличию аудиторий) сдача будет продолжена и с 12:20 до 15:30.
группа | время | ауд. |
741 | 9:00-12:10 | 321 ЛК |
742 | 9:00-12:10 | 802 КПМ |
743 | 9:00-12:10 | 319 ЛК |
6111 | 17:05-19:50 | 804 КПМ |
6112 | 17:05-19:50 | 701 КПМ |
6113 | 17:05-19:50 | 702 КПМ |
6114 | 17:05-19:50 | 806 КПМ |
6115 | 17:05-19:50 | 705 КПМ |
Можно прийти с чужой группой, но очерёдность и даже возможность сдачи в этом случае не гарантируется. (Лучше студентам вечерних групп прийти утром, чем утренним — вечером.)
Процедура приёма зачёта
Оценка по информатике ставится в результате устного ответа на дифференцированном зачёте. Присутствие на зачёте для постановки оценки обязательно!
Сдача происходит по билетам. В билете содержится два вопроса из основного списка. На подготовку студенту отводится не более 20 минут. Преподаватель слушает ответы на вопросы в билете, а также может задать от одного до трёх дополнительных вопросов, как из основного списка, так и любых других по программе курса.
Использование на зачёте любых цифровых и бумажных носителей информации студентом недопустимо! Допустимы только ручка и бумага.
Список вопросов
- Ссылочная модель данных в Python. Операторы == и is. Сборщик мусора.
- Операторы присваивания в Python. Множественное присваивание и варианты обмена переменных значениями.
- Операторы if, elif, else. Цикл while, операторы break, continue, else.
- Цикл for, операторы break, continue, else. Функция range().
- Операции алгебры логики. Таблицы истинности И, ИЛИ, НЕ, XOR, импликации и эквиваленции.
- Законы алгебры логики. Свойства операций И и ИЛИ. Законы де Моргана.
- Дизъюнктивная нормальная форма.
- Позиционные системы счисления. Перевод числа из 10-й в произвольную систему счисления и наоборот.
- Связь 2-й, 4-й, 8-й и 16-й систем счисления. Примеры и обоснование.
- Проверка последовательности чисел на наличие элемента с заданными свойствами и на соответствие всех элементов заданному свойству.
- Однопроходные алгоритмы обработки последовательности: подсчёт, сумма, произведение.
- Поиск максимума и подсчёт количества элементов, равных максимальному.
- Нахождение трёх максимальных элементов в последовательности за один проход.
- Поиск местоположения максимума в последовательности за один проход.
- Проверка простоты числа. Метод грубой силы.
- Разложение числа на множители.
- Решето Эратосфена.
- Добавление и удаление элемента в начале и в конце массива «вручную» (без append, insert, присваивания в срез и т. п.).
- Алгоритм обращения чисел в массиве. Реализация циклом, без срезов.
- Алгоритм циклического сдвига в массиве. Реализация циклом, без срезов.
- Проверка упорядоченности массива за O(N).
- Сортировка вставками.
- Сортировка выбором.
- Сортировка методом пузырька.
- Сортировка подсчётом.
- Быстрая сортировка Хоара.
- Сортировка слиянием.
- Рекурсия. Прямой и обратный ход рекурсии. Стек вызовов при рекурсии. Вычисление факториала.
- Алгоритм Евклида. Реализация через цикл и через рекурсию.
- Быстрое возведение в степень.
- Вычисление чисел Фибоначчи.
- Ханойские башни.
- Рекурсивная генерация всех чисел длины M.
- Генерация всех перестановок (рекурсивная).
- Динамическое программирование. Сходства с рекурсией и отличия от неё.
- Задача о количестве траекторий Кузнечика на числовой прямой.
- Задача о траектории наименьшей стоимости для Кузнечика. Восстановление траектории наименьшей стоимости.
- Вычисление расстояния Левенштейна.
- Наибольшая общая подпоследовательность.
- Наибольшая возрастающая подпоследовательность.
- Проверки корректности скобочной последовательности с помощью стека.
- Обратная Польская нотация. Вычисление выражения при помощи стека.
- Наивный поиск подстроки в строке. Реализация без использования стандартных методов str.
- Z-функция строки. Наивное вычисление и его оптимизация. Z-алгоритм.
- Префикс-функция. Алгоритм Кнута-Морриса-Пратта.
Оценка на зачёте
Основанием для рейтинговой оценки служат три оценки:
- Контрольная №1
- Контрольная №2
- Средняя оценка за все контесты
Преподаватель, экзаменующий студента, видит все эти оценки по отдельности, а также рекомендуемую итоговую оценку, которая вычисляется по этим пяти оценкам автоматически. Исходя из ответа студента итоговая оценка в зачётку может быть отклонена от рекомендуемой на ±2 балла (по 10-балльной шкале). Если преподаватель хочет повысить или понизить оценку на большее число баллов, он советуется с лектором, присутствующим на зачёте.
Студент при несогласии с итоговой оценкой может потребовать апелляции у старшего преподавателя, но за это придётся рискнуть 1 баллом. Если апелляция не будет успешной, и старший преподаватель полностью согласится с преподавателем-экзаменатором в его оценке знаний студента, то итоговая оценка будет понижена на 1 балл (по 10-балльной шкале).
Почему дифференцированный зачёт сдаётся устно
- Во-первых, это возможность проверить знание студентом тем, вошедших в курс лекций, но не вошедших прямо в лабораторные работы.
- Во-вторых, устный ответ расширяет у студента актив понятийного аппарата информатики, развивает умение связно излагать свои мысли на языке предмета.
- В-третьих, устный ответ даёт возможность преподавателю осознать уровень самостоятельности студента при написании им лабораторных работ.
- В-четвёртых, устный ответ позволяет студенту, продемонстрировавшему свои знания на зачёте, повысить оценку, которая получается исходя из рейтинга за работы в семестре.
- И в пятых, повторение материала лекций в конце семестра приводит к лучшему запоминанию материала и откладыванию его в долгую память.
Успехов в подготовке к зачёту!